数电基础--电平规范_TTL与CMOS

作者:逐步前行日期:9/30/2025

文章目录

  • 一、电平规范
    • 1、名称解释
    • 2、TTL电平
    • 3、CMOS电平
  • 二、数字接口匹配
    • 1、3.3V/5V TTL 驱动3.3V CMOS
    • 2、3.3V/5V TTL 驱动3.3V/5V CMOS
    • 3、3.3V/5V CMOS驱动3.3V/5V TTL
    • 4、3.3V CMOS驱动5V CMOS
  • 三、74系列IC
  • 四、电平转换——简易
    • 1、上拉电阻
    • 2、电阻分压
    • 3、二极管
  • 五、电平转换——复杂
    • 1、三极管
    • 2、集成电路

一、电平规范

1、名称解释

在这里插入图片描述

2、TTL电平

TTL集成电路主要是BJT晶体管逻辑门构成,如74LS系列IC,电平规范如下:
输出模式:Uoh ≥ 2.4V Uol ≤ 0.4V
输入模式:Uih ≥ 2.0V Uil ≤ 0.8V

3、CMOS电平

CMOS集成电路主要由MOS管构成逻辑门构成,如74HC系列IC,电平规范如下:
输出模式:Uoh ≈ VCC Uol ≈ GND
输入模式:Uih ≥ 0.7_VCC Uil ≤ 0.2_VCC

二、数字接口匹配

1、3.3V/5V TTL 驱动3.3V CMOS

可以直接驱动。

2、3.3V/5V TTL 驱动3.3V/5V CMOS

高电平输出大于2.4V,如果落在2.4V至3.5V之间,CMOS电路不能检测到高电平,需要进行电平输换。

3、3.3V/5V CMOS驱动3.3V/5V TTL

可以直接驱动。

4、3.3V CMOS驱动5V CMOS

高电平输出3.3V,CMOS电路不能检测到高电平,需要进行电平转换。

三、74系列IC

在这里插入图片描述

四、电平转换——简易

1、上拉电阻

(1)、3.3V的TTL驱动3.3V的CMOS,可以通过简单的上拉电阻实现电平匹配。
(2)、5V的TTL驱动5V的CMOS,可以通过简单的上拉电阻实现电平匹配。
(3)、3.3V的TTL驱动5V的CMOS,考虑可以存在电压钳位,比如单片机的GPIO,不适合上拉电阻。

2、电阻分压

2.8V的GPRS模块对接3.3V的单片机。客户端–>模块
在这里插入图片描述

3、二极管

2.8V的GPRS模块对接3.3V的单片机。
在这里插入图片描述

五、电平转换——复杂

1、三极管

(1)、3.3V to 5V
在这里插入图片描述

R1与Q1组成OC门,配合R2上拉至5V,实现电平转换。
Tx输出0V,Q1导通,Rx端为0.3V左右;
Tx输出3.3V,Q1截止,Rx端为5V;
完成电平转换。
(2)、5V to 3.3V
在这里插入图片描述

R3与Q2组成OC门,配合R5上拉至3.3V,实现电平转换。
Tx输出0V,Q2导通,Rx端为0.3V左右;
Tx输出5V,Q2截止,Rx端为3.3V;
完成电平转换。

2、集成电路

以74LVX4245为例:
在这里插入图片描述


数电基础--电平规范_TTL与CMOS》 是转载文章,点击查看原文


相关推荐


【SpringAI中Chat-Client用法】
明志学编程-9/30/2025

这篇文章介绍了如何使用SpringAI框架中的ChatClient进行大模型交互开发。主要内容包括:1. 对比ChatClient与底层ChatModel的区别,建议优先使用更易用的ChatClient;2. 详细展示如何创建子工程、添加依赖(以阿里云百炼平台为例)和配置;3. 提供同步和流式两种调用方式的代码示例;4. 解决多模型依赖冲突问题,通过直接注入具体ChatModel实现动态选择;5. 最后提到多平台多模型动态配置的实战应用。文章配有CSDN博客链接和示例图片,适合开发者学习SpringAI框架


《WebAssembly指南》第六章:读懂 WebAssembly 文本格式
锋通科技10/2/2025

本文介绍了WebAssembly文本格式的基本概念和使用方法。主要内容包括:1. WebAssembly文本格式采用S表达式表示模块结构,比二进制格式更易读易修改。2. 详细讲解了函数定义、参数传递、栈机器运行机制等核心概念,并通过加法函数示例演示了模块的创建和调用过程。3. 介绍了内存管理机制,包括内存共享、字符串处理和多内存使用场景。4. 深入讲解了表格(Table)的概念及其在动态链接中的应用,展示了如何通过表格实现函数指针功能。5. 概述了WebAssembly支持的各种类型和特性,包括数值类型、引


AR/VR赋能工业巡检:开启智能化运维新时代
Teamhelper_AR2025/10/2

在工业 4.0 时代浪潮的推动下,增强现实(AR www.teamhelper.cn )与虚拟现实(VR)技术加速从理论概念迈向工业应用前沿,尤其在工业设备巡检这一关键领域,正展现出前所未有的变革潜力,有望彻底颠覆传统依赖人工经验、效率低下、风险高且数据不连贯的巡检模式。 AR技术:重塑工业巡检核心优势 AR技术通过巧妙地将虚拟信息与真实环境相融合,为工业巡检人员带来了革新性的工作体验。借助AR智能眼镜,巡检人员能够实时获取设备参数、操作指南以及历史数据等关键信息,无需再频繁翻阅纸质


释放模型潜能:ONNX Runtime 如何进行优化与加速?
Cosolar2025/10/2

在机器学习从实验室走向真实世界的过程中,模型的部署与运行效率往往是决定项目成败的“最后一公里”。一个在离线环境中表现优异的模型,如果无法满足生产环境对低延迟、高吞吐和低资源消耗的要求,其商业价值将大打折扣。 ONNX Runtime (ORT) 作为由微软主导的开源跨平台推理引擎,凭借其出色的性能、广泛的硬件支持和活跃的社区,已成为业界部署模型的事实标准之一。然而,仅仅将模型转换为 ONNX 格式并使用 ORT 运行,只是拿到了“入场券”。要真正释放其潜能,我们需要从模型优化、推理引擎配置、硬


SIMD编程入门:让性能飞起来的实践指南
oioihoii2025/10/3

在现代计算中,单指令多数据流(SIMD)技术就像是一把性能优化的瑞士军刀,能让你的程序速度提升数倍甚至数十倍。本文将带你从零开始,掌握这把利器的使用之道。 什么是SIMD?从汽车生产线说起 想象一下汽车生产线:传统方式是一个工人依次安装每个轮胎,而SIMD就像是培训了一个专门团队,能够同时安装四个轮胎。这就是单指令多数据流的核心思想——一条指令,多个数据。 // 传统标量计算 - 依次处理每个元素 for (int i = 0; i < 4; i++) { result[i] = a[


HTTP为什么不安全?
你的人类朋友2025/10/4

🌐 前言 你好呀,我是你的人类朋友! 本文主要讲讲 HTTP 为什么不安全,以及 HTTPS 如何解决这些问题。 ❗❗ 核心问题速览 HTTP(超文本传输协议):互联网上应用最广泛的网络协议,但数据以明文形式传输。注意,是明文,谁都能看!! HTTPS(安全超文本传输协议):HTTP 的安全版本,= HTTP + SSL/TLS 加密,就像把明信片放进防拆信封里寄送,别人无法看到信息的内容。 补充知识 1:SSL/TLS在【传输层】对 HTTP 数据进行加密,确保隐私和完整性。 补充知识 2


【深度相机术语与概念】
是刘彦宏吖2025/10/5

获取相机输出的 深度图、灰度图、彩色图 和 点云图,用于导航、避障、三维建模、手势识别等应用。 【深度相机术语与概念】 相机类型 3D 相机 3D 相机是一种能够捕捉三维图像的相机。它通过各种技术手段(如立体视觉、飞行时间、结构光等)获取物体的三维形状和深度信息。3D 相机可以生成具有 3D 空间坐标信息的点云数据,使得计算机能够理解和处理三维空间中的物体。 主动双目立体相机 主动双目立体相机是一种结合了双目立体视觉和主动光源(如结构光)的相机系统。它通过投射已知的光图案到场景中,并使用双目相


Python 的 TCP 编程
hubenchang05152025/10/6

#Python 的 TCP 编程 传输控制协议(Transmission Control Protocol) 是一种 面向连接、可靠传输 的网络通信协议,是现代互联网最核心的协议之一。 #客户端程序 TCP 客户端程序通常只需要连接到服务器然后收发数据即可。下面是一个示例,它向 tcpbin.com 的 4242 端口发送 hello\n,对方会原样返回。 import socket # 创建 TCP socket sock = socket.socket(socket.AF_INET, so


第7章:数据库与持久化存储
芝麻开门-新起点2025/10/8

7.1 为何需要数据库:记忆与状态管理 内容讲解 默认情况下,AI Bot 是**“无状态”的。这意味着除了短暂的当前对话上下文,它不记得任何过去的事情。每次对话都是一次全新的开始。然而,在许多真实场景中,我们需要 Bot 拥有记忆**,能够持久化地存储和检索信息。这就是**数据库(Database)**的作用。 数据库为 Bot 提供了以下关键能力: 长期记忆:记住用户的偏好、历史订单、个人信息等。例如,一个订餐 Bot 应该记住你常去的地址和喜欢的口味。状态跟踪:在复杂的多轮任务中,跟踪当前


【SCI一区】【电动车】基于ADMM双层凸优化的燃料电池混合动力汽车研究(Matlab代码实现)
荔枝科研社2025/10/9

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭:行百里者,半于九十。 💥1 概述 基于ADMM双层凸优化的燃料电池混合动力汽车研究 随着车辆互联性的出现,互联汽车 (CVs) 在增强道路安全、改善乘坐舒适性、提高交通效率和提高能源效率方面提供了巨大的潜力。通过从车对车 (V2V) 和车对基础设施 (V2I) 通信中获取交通信息,CV 能够更准确、更广泛地感知

首页编辑器站点地图

Copyright © 2025 聚合阅读

License: CC BY-SA 4.0